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LETl'ER TO THE EDITOR 

Magnetisation profiles for anisotropic spin glasses 

David Elderfield 
The Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, UK 

Received 20 April 1983 

Abstract, The thermodynamic (field cooled) magnetisation is analysed throughout the 
spin glass domain (transverse T, longitudinal L or mixed LT phases) for a class of anisotropic 
m vector models, in the limit of a small collinear field. In zero field the field cooled 
susceptibility xT (xL) is independent of temperature throughout the T (L and LT) phases. 
In a finite collinear field we observe the celebrated Parisi 'h4'3' dependence of the field 
cooled magnetisation throughout the L and LT phases. For the T phase no simple 
characterisation is apparent. 

The Parisi solution (1979, 1980) of the Sherrington-Kirkpatrick m vector spin glass 
described by Elderfield and Sherrington (1982a, b) and Gabay et a1 (1982) and recently 
interpreted by Parisi (1983) and de Dominicis and Young (1983) in terms of the 
metastable states of Thouless et a1 (1977) and Bray and Moore (1981) is now widely 
accepted. A characteristic feature of the king (or m = 1) solution is that in the spin 
glass phase the field cooled magnetisation profile is flat or independent of temperature 
(Sompolinsky 1981), at least for small external fields (Elderfield 1983). For the 
isotropic m vector model in a finite field we observe (Elderfield and Sherrington 
1982c) that the profile is flat only for temperatures substantially lower than that 
associated with the onset of transverse spin glass ordering (m > l ) ,  whilst for an 
anisotropic m vector model preliminary estimates (Elderfield and Sherrington 1982a) 
suggest that flat magnetisation profiles (transverse/longitudinal) are associated with 
(transverse/longitudinal) or mixed spin glass phases in the limit of vanishingly small 
external fields. At present, however, the structure of the profile is known precisely 
only in the vicinity of the multicritical point associated with the simultaneous appear- 
ance of both transverse and longitudinal freezing, i.e. weak anisotropy and small 
external fields. To remedy this shortcoming, we shall here derive exact relations, 
closely associated with those obtained by Sommers (1983) for the Ising problem, 
which in the limit of weak external fields allows us to characterise the profiles deep 
in the spin glass phases. In this communication we shall not consider the zero field 
cooled or quasi-equilibrium magnetisation which is considerably harder to determine. 

A simple model with an interesting phase diagram is that of a spin glass with 
uniaxial anisotropy. To facilitate the construction of a mean field description we 
follow Sherrington and Kirkpatrick (1975) and adopt a Hamiltonian 

(1) 
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which describes the interaction of m-dimensional classical vectors (IS/’= ZF=1 (S,)’ = 
m) coupled via a set of infinite range exchanges {Jf}, { J : }  with distributions 

P ( J c )  = (N/27rJ; )l’’ exp[-N(J;f )2/2J;] (2) 

for A = L, T. The anisotropy axis is defined by the unit vector d with the projector 
fWv S,, - d,d, onto the transverse degrees of freedom. In the absence of exchange 
anisotropy (JT = J L )  the model reduces to that considered by Cragg and Sherrington 
(1982), Roberts and Bray (1982), for vanishing single ion anisotropy (D = 0) the 
system has been discussed by Bray and Viana (1983), whilst the isotropic case (D = 0, 
JT=JL but h #0) was originally introduced by Gabay and Toulouse (1981). To 
simplify considerations we shall consider only the case for which the external field h 
is collinear with the anisotropy axis d. 

Using the replica trick, we obtain the free energy per spin in the thermodynamic 
limit in the form of the extremal problem 

(3) PF = n - 0  lim [ext(PF({qa8, p a s } ,  x))] 

where the free energy functional is of the form 

Here (a, p )  refers to a sum over distinct pairs and we have adopted the conventional 
repeated index notation. As usual the order parameters qP8, p a @ ,  x are associated 
respectively with transverse spin glass, longitudinal spin glass and quadrupolar ordering 
through the familiar extremal equations 

a(npF)/aqaP = &PJT)’[(m - 1)qa8 - ~,Js;sE)] = o 
a(npF)/apa8 = i (pJL) ’ [p“@ -d,d,(S;SE)] = 0 
a ( n p ~ ) / a x  =4n[(m - ~ ) ( P J L ) ~ + ( P J T ) ’ ] [ ~ + ( ~  -1)x -~,~,(sEs:)]=o.  

( 5 )  

The restriction to collinear fields and zero mean exchange allows us to disregard the 
possibility of spin glass ordering transverse to both /I and d.  

To simplify (4), ( 5 )  it is useful for our purposes to adopt a variation of the Parisi 
ansatz due to Sompolinsky (1981), and de Dominicis et a1 (1982) which leads to the 
representation 

(6 )  PFs = ext(PF&(r), Aq(r), p ( r ) ,  Ap(r)I, x ) ) A ~ w ~ A ~ ( I ) = o  
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in terms of order parameter functions 4 ( r ) ,  p ( r ) ,  Aq(r), Ap(r) defined on the interval 
(0 , l ) .  The free energy functional is defined as 

- P F s ( { 4 ( r ) ,  A&), p ( r ) ,  Ap(r)Ir X )  

in terms of the partition function Z* 

Z*=Trexp@[H* * S + D * ( S  .d)’])  
{S) 

where H* is an effective field 

and D* is of the form 

PO* =PO +$(PJ~)*[I +(m - I)X - p ( l ) l + $ ( p ~ ~ ) ’ ( ~  - X  +q( l ) ) .  (10) 

m = a(In ~ * ) / a ( @ h , ) l h = h d .  (11) 

Here m is the magnetisation associated with (8), in the collinear limit. 

Finally the bar (1) denotes averaging over the gaussian random vectors z ( r ) ,  r E (0, 1) 
and z for which 

- z , o = O = z , ,  z,(r)z,(r’) =S,d(r - r ‘ )  Z,Z, = a,, (12) 

whilst [. , .Is defines a restricted average over the variables z ( r ) ,  r >s. 
The extrema equations associated with (6) et seq are of the Sompolinsky form 

-a(@FS)/as’(r) = ;(PJT)’(m - 1) 

x[4(1)- 1 +x  -Aq(r)+[l/(m - l ) l ~ , Y ( ~ m , / a ( p h u ( r ) ) ) l = O  (13) 

(14) 

(15)  

(16) 

(17) 

where @hy(r )  =@(JTda(r)r,,, +JL@(r)d,d,)z,(r)) .  Variation with respect to 4(O) 
( ~ ( 0 ) )  simply reproduces (13) ((14)) in the limit r + O .  The relations (13), (14) are 

-a@Fs)/ap’(r) = %pJL)’[p(l) - 1 - (m - l ) x  - h,(r) +d,d,(am,/a(@h,(r)))l = 0 

-4@Fd/aA;(r) = $@JT)’[(m - 1)4(r) - t,y[m,Ir[muIrI = 0 

-d(@Fd/aAb(r) = t ( P J d ’ [ p ( r )  - d,d,[“,l,l= 0 

a(@~s)/ax = 3[(@JL)’(m - 1)  + (PJT)’][l+ ( m  - 1)x -Wog Z * ) / ~ ( @ D ) ) ]  = o 
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directly useful for, following Parisi/Sompolinsky, we can identify the field cooled local 
susceptibility 

N 

i = l  
(PIN) ( ( S , i S ” i ) - ( S , i ) ( S u i ) )  

(18) 
[ 1 + ( m  - l ) ~  - p (1) + Ap ( O ) ]  + tpyP (1 - x -4 (1) + Aq ( O ) ) }  

and the zero field cooled local susceptibility 
N 

(@IN) C ( ( S F i S u i ) R  - ( S w i ) R ( S u i ) R )  
i = l  

(19) 
1 

XWu(ZFC) - - 
P(d,d,[l+(m -1)x -p( l ) ]+ t ,” ( l -x  -q(l)l}. 

Here (. . .) denotes a full Gibbs average whilst (. , . ) R  denotes the restricted Gibbs 
average appropriate to the statistical mechanics of an isolated metastable state (Parisi 
1983, de Dominicis and Young 1983). It is of course important to realise that the 
global susceptibility 

is generally distinct from x:~(Fc), the limiting case of zero field being exceptional. 
We have used a total derivative in (20) to emphasise that x,” (FC) includes contributions 
arising from the explicit h dependence of the order parameters q(r), p ( r ) ,  Aq(r), Ap(r), 
x. For the global zero field cooled susceptibility we may similarly write 

N 

X I I Y ( ~ ~ ~ )  = 1 ( s , i s u j > R - ( S , i ) R ( S u j ) R ;  (21) 
i . j= l  

however, for this case there is at present no simple operational prescription for 
computing (2 1) within the current framework. 

To date, the discussion of Heisenberg spin glasses has revolved around the Parisi 
analysis of Elderfield and Sherrington (1982a) and Gabay et a1 (1982) which 
corresponds to the ‘gauge’ choice 

AL(r) = - r ~ ’ ( r ) ,  a = p ,  4, (22) 

on the Sompolinsky functional F,, i.e. 

F ~ ( { 4 ( r ) ,  ~ ( r ) } ,  X )  = (Fs({q(r), Aq(r), ~ ( r ) ,  Ap(r))i X))ab~r ,=- ra’ ( r ) .a=p .4 .  (23) 

This relation follows directly from the observation that Fs may be rewritten in the form 
1 

-F s-dPJT)2( (m -I -1)q2(1)-2mq(l)+2(m-1)  I drAb(r)q(r)) 
0 
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(see Sommers (1983) for a discussion of the king (m = 1 )  case). As in the Ising case, 
the Sompolinsky relations (13)-(16) are in a sense incomplete, for (24) and (25 )  show 
directly that the free energy functional Fs is invariant under arbitrary reparametrisa- 
tions r + g ( r ) ,  g monotonic. Consequently this approach makes absolute predictions 
only for the behaviour at the endpoints of the natural interval chosen as (0, l ) ,  which 
correspond to the physically important Fc(r = 0) and mc(r = 1 )  limits, as outlined 
above. In the present context the Sompolinsky equations are simpler to handle and 
lead to identical predictions to those of the Parisi (or ‘gauge fixed’) approach (22). 
Our analysis will, therefore, be based on a discussion of the properties of Fs, which 
if desired may easily be generalised to describe the Parisi case. 

In order to obtain the field cooled magnetisation M 

M = E  (27) 
or the associated global susceptibility 

X , , ( F C )  = , y L ( ~ c ) d , d ,  + X T ( F C ) t , ,  =dM,/dhy = dm,/dh, (28)  

it is helpful to follow Sommers (1983) and derive a series of useful identities. Differen- 
tiating first the extrema1 relations (19, (16)  with respect to r gives the identity 

which on differentiation with respect to r leads to the similar relation 
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which allows us to evaluate the derivative with respect to r of the extrema1 relations 
(13), (14) in the desired form: 

+ [tAs (PJT)~&(~)  + dAds (PJL)~AL(~)I 

x ([am,/a(Phe (r))Ir[amv/a(PhA (r))l,[am/a(Ph+. ( r ) ) l +  perm) (34) 

where the first term follows in analogy with (29) and the second with (32). 
Broadly the field cooled susceptibility x,”(Fc) depends only on the nature of the 

spin glass phase (transverse, longitudinal or mixed) in the FC regime r + 0, at least if 
the external field is ‘weak’. Consider for example the simplest isotropic model 
(JT = JL = J, D = 0 and h = 0)  which is known to exhibit an isotropic spin glass phase 
at temperatures T sJ .  In the spin glass phase we expect both q(r)  =p(r), -Aq(r) = 
-Ap(r) to be monotonic increasing functions on an interval I (chosen as (0, 1) by 
means of the gauge transformation), which quite generally (in zero external field) 
satisfy the boundary condition 

q(0)  = p ( O )  = 0 (35) 

(see Sommers (1983) for a discussion of the Ising case). Now for such a solution we 
observe that in the limit r + 0, the averages in (29), (33) trivialise leading to the relations 

Jx(FC) = 1 

or 

q’(0) = p ’ ( 0 )  = AL(0) = Ab(0) = 0 

~ , ~ ( ~ c ) ~ ~ , , ~ ( ~ c ) ~ d M , / d h ~  = dm,/dh,. (37) 

(36) 

where we have identified the isotropic field cooled susceptibility ,y (FC) 

Naturally in zero field the global and local susceptibilities defined above are indistin- 
guishable, for the gauge symmetry Jii + -Jii, Si + -Si any i, all j = 1, . . . , N ensures 
that off diagonal contributions vanish identically (see (18), (20)). For the isotropic 
case we therefore see that throughout the spin glass phase the susceptibility X(FC) is 
independent of temperature 
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leading in ‘weak’ external fields to the flat magnetisation profile 

m, = A , ~ ( F C ) ~ ”  = (l/J)h,, (39) 

first observed by Parisi (1980) for the Ising case. The finite field corrections to (39) 
will be ignored for the present. 

Consider now the more interesting anisotropic case D # 0, JT # JL but Ir = 0 for 
which the phase diagrams are of the form sketched in figure 1, as shown by Cragg 
and Sherrington (1982), Roberts and Bray (1982), Bray and Viana (1983)T. Briefly 
one identifies domains of transverse T, longitudinal L and mixed LT spin glass ordering. 

JT = JL = J D = O  

Figure 1. Phase diagrams for the anisotropic case D # 0, J ,  = JL or D = 0, IT # JL both 
f o r h = O .  

As one might expect (Elderfield and Sherrington 1982a) the L, T phases are associated 
with pure Ising and (m - 1) isotropic spin glass ordering respectively. In the T phase 
we have A p ( r )  = p ( r )  = 0 whilst q ( r ) ,  -A4(r) are monotonic increasing functions with 
the boundary condition q(0) = 0 (in zero transverse field). In the limit r + 0 (29), (33) 
and (28) imply 

JTXT@C) = 1 

q ’ ( O )  = Ai(0) = 0 

or 

(40) 

leading to the observation that the trunsuerse field cooled susceptibility XT(FC) is 
independent of temperature in a trunsuerse spin glass phase: 

XT(FC) = (1 /JT) transverse spin glass. (41) 

Similarly in the longitudinal L spin glass phase the longitudinal field cooled susceptibil- 
ity XL(FC) is flat 

X L ( F d  = (1/JL) longitudinal spin glass. (42) 

For the mixed phase LT the analysis is more complicated, as one would expect, for 
now both ( 4 ( r ) ,  - A q ( r ) )  and ( p ( r ) ,  - A p ( r ) )  are monotonic increasing functions with 
the boundary condition q(O).= p ( 0 )  = 0 (in zero external field), coupled through the 
non-trivial relations (29), (33). Analysing the r + 0 limit as before we obtain the 

t The paper of Bray and Viana neatly avoids the problems associated with replica symmetry breaking 
effects by using the known internal field distributions to calculate limits of stability at T = 0. 
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expressions 

up to corrections of order r 2 .  In the mixed phase we therefore find that both the 
transverse and longitudinal field cooled susceptibilities are flat?: 

X L ( W  = ( l / J L )  XT(FC) = (1  /JT) mixed spin glass. (45) 

Introducing a finite collinear field h = hd we would anticipate, following Elderfield 
and Sherrington (1982b, c) and Gabay et a1 (1982), some interesting new effects. For 
the Ising-like L phase A4(r ) ,  q ( r )  remain zero whilst p ( r ) ,  -Ap(r ) ,  still monotonic 
increasing functions, now no longer obey the boundary cbndition p ( 0 )  = 0, which is 
appropriate only in the zero field case. In the r + 0 limit the averages in (29), (33) are 
now non-trivial, giving relations of the form 

1 = ( p J d 2 ( a 2 f / W h  )I2 
or 

p ' ( 0 )  = Ab(0) = 0 

where the function f ( ( h  + J L J p o z ) d ,  0) is defined by (25), (26). Similarly (15) ,  (27), 
(28) imply 

M = M d  = af /a(@h)  d P(0)  = (af /a(ph )? x:. = P ( a 2 f / a ( m 2 ) .  (47) 

M / h  = 1 - a ( h 2 / p ( 0 ) ) + .  . . (longitudinal spin glass) (48) 

h 2  =3(a4f (y ,  O ) / ~ ( ~ Y ) ~ I , = ~ ) ~ ( P ~ P ( ~ ) ) ~ + .  . . . 

In this Ising-like phase we expect p ( 0 ) -  h2'3 so developing f systematically as a 
function of ( h  + J L J p ( 0 ) z )  and performing the trivial gaussian averages we find 

where p ( 0 )  is given by the relation 

(49) 
To leading order in h we therefore observe the celebrated Parisi 'h4'3' dependence 
of the magnetisation throughout the L phase. It is also interesting to note that the 
local field cooled susceptibility ,yL (FC) is certainly different from global susceptibility 
~ L ( F c )  in a finite field as suggested above. 

(50)  
In the transverse T or mixed LT spin glass phases the analysis is more complicated. 
For in these cases both ( q ( r ) ,  -Aq(r ) )  and ( p ( r ) ,  - A p ( r ) )  are monotonic increasing 
functions (Elderfield and Sherrington 1982b) satisfying the non-trivial boundary 
condition q(0)  = 0 but p ( 0 )  # 0, reflecting the presence of the collinear field. As above 
the averages in (29), (33) are now non-trivial in the limit r + 0, giving the relations 

x: = M / h  +. . . # x L = d M / d h .  

t In Elderfield and Sherrington (1982a) we presented an alternative solution, which is now known to be 
unstable. 
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up to terms of order r 2 .  Throughout the T phase we must, therefore, conclude in 
agreement with Elderfield and Sherrington (1982b) that p ' ( 0 )  = Ab(0) = 0 in order to 
recover the correct zero field expression CyL unconstrained). The remaining constraint 
( 5  1) giving the constant susceptibility XT(FC) in zero field apparently leads to no simple 
characterisation of the magnetisation, in contrast to the case of the L phase described 
above. Entering the mixed LT phase the character of the solution changes so that 
Ab(0) and p ' ( 0 )  are non-zero, leading through (51) to the constraint 

1 = @JL)2(a2f/a(ph )2)2 (53) 
described previously in the L phase. Consequently in both the mixed LT and longi- 
tudinal L spin glass phases the magnetisation profile is of the Parisi-like form 

M / h  = 1 - $(h ' / p  ( 0 ) )  + . . . longitudinal and mixed spin glasses (54) 

where p (0) - h 2'3 is given by the relation (49). For the transverse T phase no simple 
characterisation is apparent, as illustrated by the explicit results of Elderfield and 
Sherrington ( 1 9 8 2 ~ )  for the isotropic model. 

I would like to thank Dr D Sherrington for valuable discussions and the SERC for 
financial support. 
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